第六章疾病的多基因遗传 人类的一些遗传性状或某些遗传病的遗传基础不是一对主基因, 而是几对基因,每一对基因对遗传性状或遗传病形成的作用是微小 的,故称为微效基因( minor gene)。但是,若干对基因作用积累之后, 可以形成一个明显的表型效应,称为累加效应( additive effect)。这些 基因也称累加基因( additive gene),因此这种性状或疾病的遗传方式 称为多基因遗传( poly genic inheritance)或多因子遗传( multifactorial inheritance,MF);同时由于上述的遗传性状或遗传病的发生,不仅取 决于两个以上微效基因的累加作用,还受环境因子的影响,因此这类 性状也称为复杂性状或复杂疾病( complex disease),例如,糖尿病、 精神分裂症、哮喘、多发硬化症等。另一方面,目前的研究认为在多 基因遗传中,除了微效基因所发挥的作用并不是等同的,可能存在 些起主要作用的所谓主基因( major gene),这使得多基因遗传更加复 杂,但“主基因”对了解多基因疾病的发生、诊断、治疗和预防很有 帮助。 第一节数量性状的多基因遗传 传统上,多基因遗传的理论基础是多基因遗传的疾病或性状受许 多的微效基因控制,这些微小基因彼此之间没有显性与隐性之分,是 共显性的,有累加效应,这是它不同于单基因遗传之处。 、数量性状与质量性状 多基因遗传性状或疾病与单基因遗传的性状或疾病有所不同,单 基因遗传性状决定于一对基因。因此,其基因型和表型之间的相互关 系比较直截了当,往往可以分出具有(受累)和不具有(未受累)两
1 第六章 疾病的多基因遗传 人类的一些遗传性状或某些遗传病的遗传基础不是一对主基因, 而是几对基因,每一对基因对遗传性状或遗传病形成的作用是微小 的,故称为微效基因(minor gene)。但是,若干对基因作用积累之后, 可以形成一个明显的表型效应,称为累加效应(additive effect)。这些 基因也称累加基因(additive gene),因此这种性状或疾病的遗传方式 称为多基因遗传(polygenic inheritance)或多因子遗传(multifactorial inheritance,MF);同时由于上述的遗传性状或遗传病的发生,不仅取 决于两个以上微效基因的累加作用,还受环境因子的影响,因此这类 性状也称为复杂性状或复杂疾病(complex disease),例如,糖尿病、 精神分裂症、哮喘、多发硬化症等。另一方面,目前的研究认为在多 基因遗传中,除了微效基因所发挥的作用并不是等同的,可能存在一 些起主要作用的所谓主基因(major gene),这使得多基因遗传更加复 杂,但“主基因”对了解多基因疾病的发生、诊断、治疗和预防很九游娱乐官方平台有 帮助。 第一节 数量性状的多基因遗传 传统上,多基因遗传的理论基础是多基因遗传的疾病或性状受许 多的微效基因控制,这些微小基因彼此之间没有显性与隐性之分,是 共显性的,有累加效应,这是它不同于单基因遗传之处。 一、数量性状与质量性状 多基因遗传性状或疾病与单基因遗传的性状或疾病有所不同,单 基因遗传性状决定于一对基因。因此,其基因型和表型之间的相互关 系比较直截了当,往往可以分出具有(受累)和不具有(未受累)两
种不同类型性状,因此当可以检测时,这一性状的变异在群体中的分 布是不连续的,可以明显地分为2~3群,所以单基因遗传的性状也 称质量性状( qualitative character)。例如正常人血浆中苯丙氨酸羟化 酶(PAH)的活性为100%,杂合携带者的PAH活性为正常人的45%~ 50%,苯丙酮尿症患者的PAH酶活性仅为正常人的0%~5%。这分 别决定于基因型PP、Pp、pp,若将此性状的变异作图,则可以看到 个峰(图6-1)。 图61质量性状变异分布图 多基因遗传性状的变异在群体中的分布是连续的,有一个峰,即 平均值。不同个体间的差异只是量的变异,因此又称为数量性状 ( quant itative character)。例如,人的身高、智能、血压等。如果随机 调查任何一个群体的身高,则极矮和极高的个体只占少数,大部分个 体接近平均身高,而且呈现由矮向高逐渐过渡,将此身高变异分布绘 成曲线,这种变异呈正态分布(图62) 图62数量性状(人身高)变异分布图 数量性状的多基因遗传 数量性状是由许多数目不祥、作用微小的等显性状的微效基因控 制的。那么,它是如何进行的呢?现以人的身高为例来解释数量性状 的遗传机制。假设有三对非连锁的基因控制人类的身高,它们分别是 AA′、BB′、CC′。这三对基因中A、B、C较A′、B′、C′对 身高有增强作用,各可在平均身高(165cm)基础上增加5cm,因此 基因型 AABBCO个体为高身材个体(195cm);而它们的等位基因 A′、B′、C′则各在身高平均值的基础上减低5cm,故基因型A′ A′B′B′C′C′个体为矮身材个体(135cm),介于这两者之间的 基因取决于A、B、C和A′、B′、C′之间的组合,使人的身高从
2 种不同类型性状,因此当可以检测时,这一性状的变异在群体中的分 布是不连续的,可以明显地分为 2~3 群,所以单基因遗传的性状也 称质量性状(qualitative character)。例如正常人血浆中苯丙氨酸羟化 酶(PAH)的活性为 100%,杂合携带者的 PAH 活性为正常人的 45%~ 50%,苯丙酮尿症患者的 PAH 酶活性仅为正常人的 0%~5%。这分 别决定于基因型 PP、Pp、pp,若将此性状的变异作图,则可以看到三 个峰(图 6-1)。 图 6-1 质量性状变异分布图 多基因遗传性状的变异在群体中的分布是连续的,有一个峰,即 平均值。不同个体间的差异只是量的变异,因此又称为数量性状 (quantitative character)。例如,人的身高、智能、血压等。如果随机 调查任何一个群体的身高,则极矮和极高的个体只占少数,大部分个 体接近平均身高,而且呈现由矮向高逐渐过渡,将此身高变异分布绘 成曲线,这种变异呈正态分布(图 6-2)。 图 6-2 数量性状(人身高)变异分布图 二、数量性状的多基因遗传 数量性状是由许多数目不祥、作用微小的等显性状的微效基因控 制的。那么,它是如何进行的呢?现以人的身高为例来解释数量性状 的遗传机制。假设有三对非连锁的基因控制人类的身高,它们分别是 AA′、BB′、CC′。这三对基因中 A、B、C 较 A′、B′、C′对 身高有增强作用,各可在平均身高(165cm)基础上增加 5cm,因此 基因型 AABBCC 个体为高身材个体(195cm);而它们的等位基因 A′、B′、C′则各在身高平均值的基础上减低 5cm,故基因型 A′ A′B′B′C′C′个体为矮身材个体(135cm),介于这两者之间的 基因取决于 A、B、C 和 A′、B′、C′之间的组合,使人的身高从
人的身高除受遗传因素影响外,还受到各种环境因素的影响,如 营养好坏、阳光充足与否、是否进行体育锻炼等。因此,环境因素对 表现型有重要作用,它们对某种性状的产生起着增强或抑制作用 人的身高取决于多对微效基因的组合。因此,双亲的身高决定着 子女身高。但会发现身材高大的双亲,其子女虽然身高仍偏高,但多 数将比他们的父母要矮,即比父母更接近于人群的平均身高;两个极 矮的双亲,其子女身高高于父母身高平均值。这种现象早在1926年 由英国著名的科学家 Galton发现,并称之为“平均值的回归”。他通 过测量204对双亲和他们的928名成年女子身高获此结论:如果双亲 身高平均值高于群体平均值,子女平均值就低于其双亲平均值,但接 近群体身高平均值;如果双亲身高平均值低于群体平均值,则子女身 高高于其双亲平均值,但接近群体身高平均值。这就是说,数量性状 在遗传过程中子代将向人群的平均值靠拢,这就是回归现象。这种现 象也表现于其他相似的数量性状 多基因遗传性状或数量性状表达中所反映的的回归现象,对理解 多基因遗传病遗传特点有着重要指导意义 第二节多基因病的遗传 多基因病是一类患病率较高、发病较为复杂的疾病。在分析和研 究其病因、发病机制、再发风险估计等,不仅要分析遗传因素,同时 又不能忽视环境因素影响 易患性与发病阈值 在多基因遗传病发生中,遗传因素和环境因素共同作用决定一个 个体患某种遗传病的可能性称为易患性( liability)。一般群体中,易 患性很高或很低的个体都很少,大部分个体都接近平均值。因此,群 体中的易患性变异也呈正态分布。易感性( susceptibility)特指由遗传
4 人的身高除受遗传因素影响外,还受到各种环境因素的影响,如 营养好坏、阳光充足与否、是否进行体育锻炼等。因此,环境因素对 表现型有重要作用,它们对某种性状的产生起着增强或抑制作用。 人的身高取决于多对微效基因的组合。因此,双亲的身高决定着 子女身高。但会发现身材高大的双亲,其子女虽然身高仍偏高,但多 数将比他们的父母要矮,即比父母更接近于人群的平均身高;两个极 矮的双亲,其子女身高高于父母身高平均值。这种现象早在 1926 年 由英国著名的科学家 Galton 发现,并称之为“平均值的回归”。他通 过测量 204 对双亲和他们的 928 名成年女子身高获此结论:如果双亲 身高平均值高于群体平均值,子女平均值就低于其双亲平均值,但接 近群体身高平均值;如果双亲身高平均值低于群体平均值,则子女身 高高于其双亲平均值,但接近群体身高平均值。这就是说,数量性状 在遗传过程中子代将向人群的平均值靠拢,这就是回归现象。这种现 象也表现于其他相似的数量性状。 多基因遗传性状或数量性状表达中所反映的的回归现象,对理解 多基因遗传病遗传特点有着重要指导意义。 第二节 多基因病的遗传 多基因病是一类患病率较高、发病较为复杂的疾病。在分析和研 究其病因、发病机制、再发风险估计等,不仅要分析遗传因素,同时 又不能忽视环境因素影响。 一、易患性与九游娱乐官方平台发病阈值 在多基因遗传病发生中,遗传因素和环境因素共同作用决定一个 个体患某种遗传病的可能性称为易患性(liability)。一般群体中,易 患性很高或很低的个体都很少,大部分个体都接近平均值。因此,群 体中的易患性变异也呈正态分布。易感性(susceptibility)特指由遗传
因素决定的患病风险,仅代表个体所含有的遗传因素;但在一定的环 境条件下,易感性高低可代表易患性高低。当一个个体易患性高到 定限度就可能发病。这种由易患性所导致的多基因遗传病发病最低限 度称为发病阈值( threshold)。这样,阈值将群体中连续分布的易患性 变异分为两部分,即一部分是正常群体,另一部分是患病群体(图 6-4)。阈值标志着在一定的环境条件下,患者所必需的最低的致病基 因数量,所以多基因遗传性状亦属于阈值性状。 图6-4群体易患性变异分布 个个体的易患性高低无法测量,但是,一个群体的易患性平均 值可以从该群体的患病率作出估计。利用正态分布平均值(或均值μ) 与标准差(δ)之间已知关系,可由患病率估计群体的发病阈值与易 患性平均值之间的距离,这距离是以正态分布的标准差作为衡量单 位。根据正态分布曲线%,可推算得到均数加减任 何数量标准差的范围内,曲线与横轴之间所包括面积占曲线下的总面 积的比例。多基因遗传病的群体易患性呈正态分布,因此,它必然具 有正态分布的特征,从图6-5中可以得到以下关系:①μ18(以平均 值μ为0,左右1个标准差)范围内的面积占正态分布曲线%,此范围以外的面积占31.72%,左右侧各占约16%;②μ 26范围内的面积占正态分布曲线%,此范围以外 的面积占454%,左右侧各占约23%;③μ36范围内的面积占正态 分布曲线%,此范围以外的面积占0.26%,左右侧 各占约0.13%。 图65正态分布曲线关系 多基因遗传病易患性正态分布曲线下的面积代表总人群,其易患 性超过阈值的那部分面积为患者所占的百分数,即患病率。所以人群 中某一种多基因遗传病的患病率即为超过阈值的那部分面积。从其患
5 因素决定的患病风险,仅代表个体所含有的遗传因素;但在一定的环 境条件下,易感性高低可代表易患性高低。当一个个体易患性高到一 定限度就可能发病。这种由易患性所导致的多基因遗传病发病最低限 度称为发病阈值(threshold)。这样,阈值将群体中连续分布的易患性 变异分为两部分,即一部分是正常群体,另一部分是患病群体(图 6-4)。阈值标志着在一定的环境条件下,患者所必需的最低的致病基 因数量,所以多基因遗传性状亦属于阈值性状。 图 6-4 群体易患性变异分布图 一个个体的易患性高低无法测量,但是,一个群体的易患性平均 值可以从该群体的患病率作出估计。利用正态分布平均值(或均值) 与标准差()之间已知关系,可由患病率估计群体的发病阈值与易 患性平均值之间的距离,这距离是以正态分布的标准差作为衡量单 位。根据正态分布曲线%,可推算得到均数加减任 何数量标准差的范围内,曲线与横轴之间所包括面积占曲线下的总面 积的比例。多基因遗传病的群体易患性呈正态分布,因此,它必然具 有正态分布的特征,从图 6-5 中可以得到以下关系:①1(以平均 值为 0,左右 1 个标准差)范围内的面积占正态分布曲线%,此范围以外的面积占 31.72%,左右侧各占约 16%;② 2范围内的面积占正态分布曲线%,此范围以外 的面积占 4.54%,左右侧各占约 2.3%;③3范围内的面积占正态 分布曲线%,此范围以外的面积占 0.26%,左右侧 各占约 0.13% 。 图 6-5 正态分布曲线中与关系 多基因遗传病易患性正态分布曲线下的面积代表总人群,其易患 性超过阈值的那部分面积为患者所占的百分数,即患病率。所以人群 中某一种多基因遗传病的患病率即为超过阈值的那部分面积。从其患
电话:13929967909
座机:0757-83205002
邮箱:19407036@qq.com
地址:广东省佛山市禅城区国际交易中心8座2楼30-31号